Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value
anna mc smoking 15
Download: https://gohhs.com/2vINV5
These findings indicate that the influence of social relationships on the risk of death are comparable with well-established risk factors for mortality such as smoking and alcohol consumption and exceed the influence of other risk factors such as physical inactivity and obesity. Furthermore, the overall effect of social relationships on mortality reported in this meta-analysis might be an underestimate, because many of the studies used simple single-item measures of social isolation rather than a complex measurement. Although further research is needed to determine exactly how social relationships can be used to reduce mortality risk, physicians, health professionals, educators, and the media should now acknowledge that social relationships influence the health outcomes of adults and should take social relationships as seriously as other risk factors that affect mortality, the researchers conclude.
Data across 308,849 individuals, followed for an average of 7.5 years, indicate that individuals with adequate social relationships have a 50% greater likelihood of survival compared to those with poor or insufficient social relationships. The magnitude of this effect is comparable with quitting smoking and it exceeds many well-known risk factors for mortality (e.g., obesity, physical inactivity). These findings also reveal significant variability in the predictive utility of social relationship variables, with multidimensional assessments of social integration being optimal when assessing an individual's risk for mortality and evidence that social isolation has a similar influence on mortality to other measures of social relationships. The overall effect remained consistent across a number of factors, including age, sex, initial health status, follow-up period, and cause of death, suggesting that the association between social relationships and mortality may be general, and efforts to reduce risk should not be isolated to subgroups such as the elderly.
Findings from this report support previous studies that indicate The Real Cost meets or exceeds guidelines for effective health communication interventions (2). FDA conducted formative research to develop campaign advertisements for The Real Cost, including qualitative and quantitative testing of campaign messages and draft advertisements (RTI International and FDA, unpublished data, 2016). Since its launch, campaign advertising has occurred with high frequency across multiple media channels targeting youths. Research indicates that approximately 9 of 10 youths reported seeing The Real Cost advertisements after 7 months, with more youths reporting awareness of advertising in subsequent surveys (4). The Real Cost was also found to positively influence tobacco-related risk perceptions and beliefs specific to campaign messages after 15 months (RTI International and FDA, unpublished data, 2016). These results demonstrate the effectiveness of a national campaign that focused on the harmful effects of smoking and delivered salient messages that resonated with youths.
These findings align with previous research that found targeted mass media campaigns, delivered with sufficient intensity and duration, can decrease smoking initiation and prevalence (2,9). A comprehensive tobacco control approach that emphasizes proven strategies, such as The Real Cost, can result in reductions in smoking among youths today, and such reductions can lead to decreased future rates of smoking-attributable mortality, health care costs, and lost workplace productivity (3,9).
The majority of patients suffering from cluster headache (CH) are smokers and it has been suggested that smoking may trigger the development of CH. The aim of this pilot survey was to describe: 1. the differences between current, former, and never smokers CH patients; 2. if smoking changed during an active cluster period; 3. if CH changed after quitting.
Patients with episodic CH who are also smokers appear to have a more severe form of the disorder. However, it is unlikely that between CH and smoking there is a causal relationship, as CH patients rarely improve quitting smoking.
One of the strongest proofs to establish the existence of a causal link between a substance and an event is its decrease/disappearance by discontinuing the intake of the substance. In fact, several diseases caused by smoking improve quickly if the patient stops smoking. However, the impact of continuing or quitting smoking on the clinical presentation and the time course of CH has not been much studied. Thus, the purpose of our pilot survey was to describe, by means of a questionnaire administered by telephone, the impact of the smoking status on episodic CH patients consecutively seen at a headache centre, exploring: 1. the differences between current, former, and never smokers; 2. if the mode of smoking changed in current smokers during an active cluster period 3. if CH had changed in former smokers after they had stopped smoking.
A questionnaire was prepared for the study. It included a demographic section and a section investigating the characteristic of CH (age of onset, frequency and length of active periods, and maximum number of attacks/day in the active period) and whether patients were current, former or never smokers. Those who declared themselves current or former smokers were asked to specify the age of onset of smoking, the number of cigarettes smoked at the beginning and presently, and if in the active period of CH their mode of smoking increased, decreased or was unchanged and why. Former smokers were asked how long before they had quit smoking and if this had increased, decreased or unchanged the characteristics of the headache (frequency and duration of the active periods, maximum number of attacks per day, length and intensity of the single attack).
After they had stopped smoking (Figure 1), most former smokers reported that their headache had not changed. In particular, the patients who did not report any change in the length of the active phase (n = 28/42, 66.7%), the maximum number of attacks/day (n = 32/42, 76.2%), the intensity (n = 26/42, 61.9), and the length of the single attack (n = 36/42, 85.8%) were more than those who stated a reduction of these variables (length of the active period: n = 10/42, 23.8%; number of attacks/day: n = 6/42, 14.3%; intensity: n = 12/42, 28.6%; length of the single attack: n = 6/42, 14.3%). A minority of patients reported an increase in the length of the active period (n = 4/42, 9.5%), the number of attacks/day (n = 4/42, 9.5%), and the intensity of the attack (n = 4/42, 9.5%). Nine out of 42 (22%) declared an increase, 19/42 (45%) a reduction, and 14/42 (33%) no change as far as the frequency of active periods is concerned.
The results of our survey indicated that the smoking status was associated with a more severe phenotype of CH than that of patients who had never smoked. In fact, current smokers reported longer active periods and a higher maximum number of attacks per day compared to never smoker CH patients (P
Patients with pain who are smokers use smoking to manage pain-related emotional distress and as a distracter from pain [25]. Up to 93% of patients with CH report a sense of agitation and restlessness during the attack [7, 26, 27]. Despite this, most patients said that, during active periods, they did not change smoking or smoked less because their desire to smoke decreased (83.8%) or because smoking worsened pain (16.2%). Maybe this aversive effect was partly caused by the symptoms of cranial autonomic activation, such as lacrimation, nasal congestion, and/or rhinorrhea, which are present in the vast majority of patients [11, 27], and may have made quite unpleasant to smoke. Other symptoms, often present during the attack, such as discomfort for strong smells, nausea and vomiting [7, 27], may have contributed to reduce smoking or prevented from smoking more to relieve restleness. The behaviour of smokers during active periods of CH has not been much studied. In part, our results confirm what has been reported in a study involving 49 patients with CH: namely, while most patients reduce alcohol intake in active phase, they do not change tobacco use [6]. A recent survey shows that only 27% of patients use cigarettes to relax during or after an attack [8]. 2ff7e9595c
Comments